

DEPARTMENT OF TECHNOLOGY <u>THIRD YEAR B.TECH</u> Civil Engineering

Scheme of Teaching and Examination

Semester – V

		Г	'each (Hou	ing S rs / V	cheme Veek)		Exam	heme (Ma	me (Marks)			
Subject	Subject					Т	heory		Practical			
Code		L	T	P	Credits	Scheme	Max. marks	Min. Passing #	Scheme	Max. marks	Min. Passing	
*CE 211	Design of Steel					CIE	50	20	IOE	50	20	
*CE 311	Structures	03	01	-	04	SEE	50	20				
CE 312	Transportation					CIE	50	20				
CE 512	Engineering –I	04	-	-	04	SEE	50	20				
CE 313	Geotechnical					CIE	50	20				
	Engineering- I	03	01	-	04	SEE	50	20				
CE 314	Environmental					CIE	50	20				
	Engineering-I	04	-	-	04	SEE	50	20				
CE 315	Construction					CIE	50	20				
	Management	04	-	-	04	SEE	50	20				
CEL316	Lab-I Transportation Engineering –I	-	-	02	01				EPE	50	20	
CEL317	Lab-II Geotechnical Engineering- I	-	-	02	01				EPE	50	20	
CEL 318	Lab-III Environmental Engineering-I	-	-	02	01				EPE	50	20	
CE 319	Seminar	-	-	02	01				IPE	50	20	
CE 320	Internship-I	-	-	-	01				IOE	50	20	
	Total	18	02	08	25		500			300		
						Audit Course						
AC 330	Introduction to Foreign Language	2	-	-		Institute/ Departmental Level	100	20				

Total Credits: 25 Total Contact Hours/Week: 30 hrs **Note:**

#: Minimum 40% marks required in CIE to become eligible for SEE.

• Tutorials and practical shall be conducted in batches with batch strength not exceeding 18 students.

* Theory paper will be of 4 hours.

CIE - Continuous Internal Evaluation, SEE - Semester End Examination,

- IPE Internal Practical Evaluation,
- EPE-External Practical Examination,

IOE– Internal Oral Evaluation,

EOE-External Oral Examination

DEPARTMENT OF TECHNOLOGY

THIRD YEAR B.TECH

Civil Engineering

Scheme of Teaching and Examination

Semester - VI

		Г	each	ing S	cheme								
Subject			(Hou	rs / V	Veek)	Examination Scheme (Marks)							
Code	Subject	-	-	-	~	Theory Practical							
		L	Т	Р	Credits		Max.	Min.		Max.	Min.		
						Scheme	marks	Passing	Scheme	marks	Passing		
								#			-		
CE 321	Theory of structures	04	01		05	CIE	50	20	IOE	50	20		
	-II	04	01	-	03	SEE	50	20					
CE 322	Water Resource					CIE	50	20					
	Engineering -I	04	-	-	04	SEE	50	20					
CE 323	Transportation					CIE	50	20					
	Engineering –II	04	-	-	04	SEE	50	20					
CE 324	Environmental	04			04	CIE	50	20					
	Engineering-II	04	- 04		04	SEE	50	20					
CE 325	Geotechnical	02	01		0.4	CIE	50	20					
	Engineering- II	03	01	-	04	SEE	50	20					
CEL326	Lab-I Geotechnical	-	-	02	01				EOE	50	20		
	Engineering- II			02	01				EUE	30	20		
CEL327	Lab-II	-	-										
	Environmental			02	01				EPE	50	20		
	Engineering-II												
CEL328	Lab-III								IOE	50	20		
	Structural Design	-	-	02	01				EOE	50	20		
	Drawing-I									50	20		
CE 329	Mini Project	-	-	02	01				IPE	50	20		
	Total	19	02	08	25		500			300			
					Audit	Course							
AC 331	Research	2	-	-	- In	stitute/	100	20					
	Methodology				Depa	artmental							
]	Level							

Total Credits: 25

Total Contact Hours/Week: 31hrs

Note:

#: Minimum 40% marks required in CIE to become eligible for SEE.

• Tutorials and practical shall be conducted in batches with batch strength not exceeding 18 students.

* Theory paper will be of 4 hours.

 $CIE-Continuous\ Internal\ Evaluation,\quad SEE-Semester\ End\ Examination,$

IPE – Internal Practical Evaluation, EPE–External Practical Examination,

IOE– Internal Oral Evaluation,

EOE-External Oral Examination

Class & Semester	:	T. Y. B.Tech (C	T. Y. B.Tech (Civil Engineering) Part I, Sem V											
Course Title	:	Design of Steel St	Design of Steel StructuresCourse Code::CE 3											
Teaching Scheme (Hours)	:	3 hours/weeks = 3 minimum Tutorial= 01hr/w Practical=/weel	x 13 weeks eek k	Total Credits	:	03+ 01 +00 =04								
Evaluation Scheme (Marks)	:	CIE = (20+20+10) SEE = 50	IPE IOE EPE/EOE	:	+50 = 150	Duration of SEE	:	4 hrs						
Revision:	:	Second				Month	:	December 2017						

Pre-requisites	:								
The prerequisite for this course is to possess the fundamental knowledge of material properties, calculation of shear force and bending moment and analysis of truss.									
Type of Course	:	Theory							
Course Domain	:	Core							
Skills Imbibed		Cognitive, Affective domain , Psychomotor							
Course Assessment Met	hods								
Student is evaluated during (Contin	uous Internal Evaluation (Internal Test I & Internal Test II) and Semester							
End Examination.									
Course Objectives:									
1. To understand	the use	e of IS Codes related to structural design of steel structures							
2. To understand	2. To understand the concept of limit state method								
3. To design of bolted and welded connections									
4. To design of te	4. To design of tension and compression members of steel structures, columns and column bases								
F m 1 1 0 1									

- 5. To design of beam and plate girder
- 6. To prepare detailed structural drawings of a steel structure

Course Outcomes:

- 1. Understand the use of IS Codes related to structural design of steel structures
- 2. Understand the concept of limit state method
- 3. Design of bolted and welded connections
- 4. Design of tension and compression members of steel structures, columns and column bases
- 5. Design of beam and plate girder
- 6. Prepare detailed structural drawings of a steel structure

Curriculum Content

UNIT 1			4					
Introduction to structural desi	gn. S	structural systems. Roll of the designer. Advantages of steel as	-					
a structural material. Types of	f stru	ctural steel. Mechanical properties of steel, various rolled steel						
sections (including cold-formed sections, structural pipe (tubes) sections and their properties								
Codes and specifications. Design philosophies. Limit state method								
UNIT 2								
i) Bolted connections: Behavi	ior ot	bolted joints. Design strength of ordinary black bolts. Design	7					
strength of ordinary black bo	lts. D	Design of simple connections. Beam to beam, beam to column.						
framed connections	, 2							
ii) Welded connections: Type	s and	properties of welds. Types of joints. Effective areas of welds						
Design of simple connections	Bea	m to beam beam to column framed connections						
LINIT 3	, Dea	in to beam, beam to column, named connections.						
Design of Tansion members:	Tun	as of tansion members. Slanderness ratio. Rehavior of tansion	6					
members Medes of failure D	T yp	a of angle sections for tension						
Interneters, Modes of failure, D	esigi	1 of angle sections for tension.						
	1		10					
Design of Compression Me	embe	rs: Behavior of compression members, Modes of failure,						
Classification of cross section	on, I	Effective length of compression members, Design strength,						
Compression members in tr	usses	s, Design of columns subjected to axial loads, Laced and						
Battened columns. Column ba	ises:	Slab base and Gusseted base.	_					
UNIT 5			6					
Design of beams: Laterally	resti	ained and unrestrained simply-supported beams. Design of						
compound beams. Curtailmen	t of f	lange plates.Design of Gantry girder	-					
UNIT 6			6					
Design of Roofing for an inc	dustr	al building: Roofing materials, Types of trusses, Loading on						
roof trusses, Analysis of trusses, Design of various members of roof trusses.								
Text Books	:							
1. Duggal S. K., "Design	of S	teel Structures". Tata Mc Graw Hill Publishing CompanyLtd. No	ew Delhi					
2008 3 rd Edition			,					
2000, 5 Lution. 2 Bhavilatti C.C. "Dasi	an of	Staal Structures by Limit State Method" I V International Dubl	liching					
	511 OI	Ster Structures by Limit State Method , I.K International Publ	usinng					
2. Bhavikatti S.S., "Desig House Pvt. Ltd.	gn of	Steel Structures by Limit State Method", I.K International Publ	lishing					

Reference Books

:

- Arya A.S. and Ajamani J.L., "Design of Steel Structures", Nemchand and Brothers, Roorkee, 1996, 2nd Edition.
- 2. Dayaratnam, "Design of Steel Structures", Wheeler Publishing, New Delhi, 2006, 3rd Edition.

3.	Gaylord E.H. and Gay	lord (C.N., "Design of Steel Structures", Mc Graw Hill, New York, 2008, 3 rd						
	Edition.								
4.	Lothers J. E., "Design in Structural Steel Vol-I", Prentice Hall New Jersy.								
5.	Punmia B.C., Jain & J	ain, "	Design of Steel Structures", Laxmi Publication, New Delhi, 2008,						
	2 nd Edtion.								
6.	Ram Chandra, "Design o	of Stee	el Structures, Vol - I & Vol – II'', Standard Book House, New Delhi, 2007, 2nd						
	Edition.								
7.	Subramanian N., "Des	ign o	f Steel Structures", Oxford University Press, New Delhi, 2008, 2 nd Edition.						
8.	Vazirani&Ratwani, "I	Desigi	n of Steel Structures", Mc Graw Hill, New York, 2000, 2 nd Edition.						
9.	Salmon C.G. and Johnso	onJ.E.	, "Steel Structures: Design and Behaviour", Harper and Row, New York, 1995.						
10	"Teaching Resource in	Desig	n of Steel Structures", IIT Madras, SERC Madras, Anna Univ., NSDAG, 2007.						
Refer	ence Codes	:							
1.	IS: 800 - 2007, Indian	Stand	ard code of Practice for use of structural steel in general building construction,						
	BIS – New Delhi (Thire	d Rev	ision).						
2.	IS: 875 (Part 1) (1987,	Reaf	Firmed 2008): Code of Practicefor Design Loads (Other Than Earthquake) For						
	Buildings and Structur	es. Pa	art 1: Dead Loads -Unit Weights of Building Materials and Stored Materials						
	(Second Revision).								
3.	IS: 875 (Part 2) (1987,	Reaf	irmed 2008): Code of Practicefor Design Loads (Other Than Earthquake) For						
	Buildings and Structure	s. Pa	t 2: Imposed Loads (Second Revision).						
4.	. IS: 875 (Part 3) (1987): Code of Practice for Design Loads(Other Than Earthquake) For Buildings and								
	Structures. Part3: Wind Loads (Second Revision).								
5.	IS Handbook No. 1- Pro	operti	es of structural Steel Rolled Section.						
6.	Steel Table								
	***Tutorials should be	cond	acted on the basis of solution of design problems.						

Class & Semester	:	: T. Y. B.Tech (Civil Engineering) Part I, Sem V											
Course Title	:	Transportation	Engineering	g-I		Course Code:	:	CE 312					
Teaching Scheme (Hours)	:	4 hours/weeks = 4 minimum Tutorial= 00hr/w Practical= 02hr/w	4 x 13 week veek eek	s= 5	Total Credits	:	04+ 00 +01 =05						
Evaluation Scheme (Marks)	:	CIE = (20+20+10) SEE = 50	IPE IOE EPE/EOE	:	+50=150	Duration of SEE	:	3 hrs					
Revision:	:	Second	•	-	•	Month	:	December 2017					

Pre-requisites	:	Geotechnical Engineering.				
-						
The prerequisite for this co	urse	is to possess the fundamental knowledge of highway engineering and				
planning, Highway material p	roper	ties, bridge engineering, airport engineering.				
Type of Course	:	Theory				
Course Domain	:	Core				
Skills Imbibed	:	Cognitive, Affective domain, Psychomotor				
Course Assessment Methods:						

Student is evaluated during Continuous Internal Evaluation (Internal Test I & Internal Test II) and Semester End Examination.

Course Objectives:

1. To familiarize students with sub-branches of Transportation Engineering such as highway engineering, bridge engineering and airport engineering.

2. To make students learn various terminologies related with highway engineering, bridge engineering and airport engineering.

3.To study the various components involved in highway engineering, bridge engineering and airport engineering.

4. To understand the planning aspect involved in highway engineering, bridge engineering and airport engineering.

Course Outcomes:

- 7. Understand concepts and planning of highway engineering and highway safety.
- 8. Understand the concepts and analysis of highway geometric design.
- 9. Understand the principles and design of rigid and flexible pavements.
- 10. Decide the selection of a bridge structures; list the factors affecting, design of a various parameters of bridge structures.
- 11. Design and plan airport, runways terminals buildings, hangers and aprons.

Curriculum Content	Hours
HIGHWAY ENGINEERING	
UNIT 1	
Introduction Scope of highway engineering, Road development plans, Recent developments – NHAI,NHDP,PMGSY,MSRDC, Highway finance –BOT, Annuity, PPP, DBFO. Highway construction- Types of roads: WBM, BBM, SDBC, DLC& POC.	6
UNIT 2	10

Highway Geometric Design: terrain classification, cross-sectional elements highway alignment-definition, requirements, factors controlling alignment, alignment of hill roads., sight distances, horizontal alignment – super elevation, extra widening of pavement on horizontal curve, vertical alignment –gradient, vertical curves, design problems. Highway drainage- necessity, surface draining, sub-surface drainage.Traffic engineering- traffic characteristics, traffic studies. Traffic control devices-road marking, traffic sign, traffic signal, intersection.

UNIT 3

Pavement materials-

Bituminous materials: types,tests on bitumen, Bituminous mix design: principle, methods and modified binders.Stone aggregates: desirable properties, tests, requirements.

Design of pavements-

Types of pavements, Design steps of flexible highwaypavement as per IRC 37-2001 and problems based on CBR method, Design ofrigid pavement as per IRC 58-2002, Stresses in rigid highway pavements, Joints in rigid pavements: transverse joints, longitudinal joints, fillers andsealers, Pavement design factors, design wheel load, equivalent single wheel load, repetition of loads, equivalent wheel load factors, strength characteristics of pavement materials, climatic variation.

BRIDGE ENGINEERING

UNIT 4

Introduction: Classification of bridges, selection of site, Bridge Hydrology: determination of design discharge, linear water way, economical span, location of piers and abutments, afflux, scour depth, design problems on above topics.

UNIT 5

Standard specification for bridges: - IRC loads, Railway bridge loading, forces acting on super structure. Design considerations, aesthetics of bridge design.Types of bridge foundations, Bridge piers, Abutments, Wing walls, bearings. Construction and maintenance of bridges—Introduction; Recent trends in bridges.

AIRPORT ENGINEERING

UNIT 6

Introduction: Terminology, Airport Classification ICAO, components of an aircraft, aircraft characteristics. Airport Planning: Airport surveys, Site selection, Airport Obstructions, layouts, zoning laws, Environmental considerations. Air Traffic Control: VFR, IFR, Visual aids, airport lighting and marking. Runways: Orientation, wind rose, Basic runway length, Geometric design, Airport capacity, Runway patterns. Taxiways: Layout, geometrical standards, exit taxiways. Terminal Buildings: Site selection, facilities, aprons, parking systems and Heliport.

Text Books	••	

Shivaji University, Kolhapur, Maharashtra State, India

12

12

6

1. Hig 2. 'Tra	 Highway Engineering Khanna S.K. and C.E.G. Justo NemChand& Bros., Roorkee. 'Transportation Engineering – An Introduction', Prentice Hall of India Ltd., New Delhi.Khistry, C.J., 									
Refer	ence Books	:								
1.	Pavement Analysis and	d Des	ign -Yang H. Huang Prentice-Hall.							
2.	Principles of Transpor	tatior	Engineering –ParthaChakroborty and Animesh Das - Prentice-Hall India,							
	New Delhi. India									
3.	Wright, Highway Engi	ineeri	ng, 7th Edition WILEY.							
4.	Highway Engineering-	S.K.	Sharma.							
5.	Bridge Engineering- S	.P. Bi	ndra.							
6.	Bridge Engineering -P	onnus	swamy S -Tata Mcgraw Hill Publications.							
7.	Airport Planning and I	Desig	n -Khanna S.K., Arora M.G. and Jain S.S Prentice-Hall India, New Delhi.							
8.	Airport Engineering, R	Rao G	.V, Tata McGraw Hill							
	~ 1									
Refer	ence Codes	:								
1.	IRC: 76-1979 – Tenta Indian Roads Congress	tive (s -IR(Guidelines for Structural Strength Evaluation of Rigid Airfield Pavement - C, New Delhi.							
2.	 IRC: 85-1983 – Code of Practice for Accelerated Strength Testing and Evaluation of Concrete Road and Air field Constructions- Indian Roads Congress -IRC, New Delhi. 									
3.	3. IRC: 58-2002 (Second Revision) – Guidelines for the Design of Rigid Pavements for Highways.									
4.	. Indian Roads Congress -IRC, New Delhi.									
5.	IRC: 37-2001 – Gui Congress-IRC, New D	deline elhi.	es for the Design of Flexible Pavements for Highways-Indian Roads							

Class & Semester	:	T. Y. E	f. Y. B.Tech (Civil Engineering), Part I, Sem V							
Course Title	:	Lab-IT	ransportation Engineering –I	Course Code:	:	CEL 316				
Pre-requisites		:	Geotechnical Engineering.							

The prerequisite for this cours pavement and design of airpor	e is t ele	to possess the knowledge of highway pavement materials, design of ments.
Type of Course	:	Practical
Course Domain	:	core
Skills Imbibed	:	Cognitive, Affective domain , Psychomotor
Course Assessment Meth	ods	
Student is evaluated during Ex	tern	al Practical Examination
<i>Course Objectives:</i> 1. To familiarize students to p 2. To learn the objectives of co	roce ondu	dure about the conducting test on highway material. Incting various test on highway material
<i>Course Outcomes:</i> 1. Students will be aware abou 2.Students will learn the object	it the	e procedure adopted for conducting test on highway material. s of conducting various tests on highway material.
Practical covered	:	
The laboratory work sho	uld	include the following:
Term work:		
 I) List of experiments: A) Test on Aggrega 1. Specific Gravit 2. Impact Value. 3. Abrasion Test. 	tes y an	d Water Absorption Test.
4. Crushing Test.		
 B) Test on Bitumine 1.Bitumen Penetrat 2.Softening Point. 3.Flash Point and F 	tion Fire l	Materials Test. Point Test.
4.Ductility test.		
5. Viscosity Test. 6 Stripping value T	` est	
II) Assignments on each	h un	it including design problems as follows
1. Design of Flexible P	aver	nent.
2. Design of Rigid pave	emer	nt.
3. Airport Engineering.		
III) Industrial visit with	h rej	port (Any One)
1. Visit to Hot mix plant		
2. Visit to Road con	struc	ction work.

3. Visit to AirPort.

4. Visit to Bridge.

Class & Semester	:	T. Y. B.Tech (Civil Engi	ine	ering) Par	t I, Sem V		
Course Title	:	Geotechnical En	gineering-I			Course Code:	:	CE 313
Teaching Scheme (Hours)	:	3 hours/weeks = 3 minimum Tutorial= 01hr/w Practical= 02hr/w	x 13 weeks veek eek	s= 3	9 hrs	Total Credits	:	04+ 00 +01 =05
Evaluation Scheme (Marks)	:	CIE = (20+20+10) SEE = 50	IPE IOE EPE/EOE	:	+50 +50=200	Duration of SEE	:	3 hrs
Revision:	:	Second				Month	:	December 2017

Pre-requisites	:	Basic Civil Engineering ,Building Construction material
The prerequisite for this cour	rse is	to possess the fundamental knowledge of civil engineering and Building
Construction material and its	prope	erties.
Type of Course	:	Theory
Course Domain	:	Core
Skills Imbibed	:	Cognitive, Affective domain, Psychomotor
Course Assessment Meth	ods:	

Student is evaluated during Continuous Internal Evaluation (Internal Test I & Internal Test II) and Semester End Examination.

Course Objectives:

1. To provide students with basic understanding of physical and mechanical properties of soil, together with knowledge of basic engineering procedures to identify factors controlling soil behavior and methods to determine soil properties. Students will acquire basic knowledge in engineering design of geotechnical systems

2. To make students learn various terminologies related with Geotechnicaland soil engineering.

3.To study the various earth pressure and stress distribution in geotechnical engineering.

4. To understand the stability of slopes and slope stability analysis.

Course Outcomes:

1. Understand properties of Soil and its classification.

2. Understand the concepts and analysis of permeability and seepage in soil.

3. Understand the concept of Compaction and field control of compaction to enhance the strength of soil.

3. Study the shear strength parameters and method to calculate shear strength of soil.

4. Evaluate and understand the pressure distribution in soil.

5. Evaluate earth pressures and apply to check external stability of retaining structures.

Curriculum Content	Hours
UNIT 1 Properties of Soil	ć
Introduction to Soil Mechanics, major soil deposits of India such as marine deposits, black cotton soils, lateritic soils, alluvial deposits and desert soils. Three phase soil system, structure of soil, particle size and shape, weight volume relationships, index properties of soil methods of determination and its significance, I.S. classification of soil, field identification of soils. Soil grain and soil aggregate properties of coarse and fine grained soils.	0

UNIT 2

Permeability and Seepage

Permeability of soil, Capillary water, Darcy's law. Factors affecting permeability. Determination of permeability by constant head and falling head method as per IS - 2720, field test as per IS - 5529 (part I)- pumping in test and pumping out test. Permeability of layered soils. Seepage forces. General flow equation. Flow net and its applications, quick sand condition. Uplift pressure, exit gradient, failure due to piping, criteria for design of filters.

UNIT 3

Compaction

Soil compaction phenomenon. Factors affecting compaction. Dry density and moisture content relationship. Zero air voids line. Effect of compaction on soil structure. Standard Proctor test and Modified Proctor test as per IS -2720. Field compaction equipment and methods. Placement water content. Field control of compaction, Compaction of cohesive and non-cohesive soils-relative density.

UNIT 4

Shear Strength of Soil

Stress strain curve, Mohr circle of stress, Mohr-coulomb failure criteria, pore pressure, total and effective stress. Peak and residual shear strength. Factors affecting shear strength. Laboratory measurement of shear strength by direct, unconfined and triaxial tests under different drainage conditions. Vane shear test. Shear strength Characteristics of sand and clay. Sensitivity and thixotropy of cohesive soils.

UNIT 5

Stress Distribution in Soils

Boussinesq's theory- point load, line load, strip load, pressure distribution diagram on a horizontal and vertical plane, pressure bulb, Westergaard's theory, contact pressure, approximate stress distribution method.

UNIT 6

Earth Pressure

a) Lateral Earth Pressure

Limit analysis and limit equilibrium methods, effect of wall movement on earth pressure, earth pressure at rest, Rankine's State of plastic equilibrium, submerged backfill, backfill with uniform surcharge, backfill with sloping, Surface, Coulomb's theory.

b) Stability of Slopes

Slope classification, slope failure, modes of failure. Infinite slope in cohesive and cohesionless soil, slope stability analysis using Swedish Slip Circle Method. Note- More emphasis would be given on basic fundamentals in the course work.

Shivaji University, Kolhapur, Maharashtra State, India

6

6

7

7

7

Text Books	:	i
 Textbook of Soil Med 2010by V.N.S. Murthy. 	chanic	s and Foundation Engineering: Geotechnical Engineering Series Paperback –
2. An Introduction to Soil	Mech	anics- Arnold Verruijt, Springer International Publishing.
Reference Books	:	
1. Soil Mechanics ar	d Fo	undations-Dr. B.C.Punmia, Dr. Arun Jain and Dr. Ashok.K. Jain - Laxmi
Publication.		
2. Textbook Of Soil	Mech	anics And Foundation Engineering, Murthy C.S.R
3. Karl Terzaghi and	Ralp	h B. Peck, Gholamreza Mesri, Soil Mechanics in EngineeringPractice, Wiley
and Sons, 1996.		
4. Alamsingh, Soil N	/lecha	nics and Foundation Engineering, Vol I & Vol II, Standard bookHouse, 2013.
5. Arora K.R., "S	oil I	Mechanics and Foundation Engineering", Standard Publishers and
Distributors1989,	2nd E	dition.
6. Bowles J. E., "En	ginee	ring Properties Of Soils And Their Measurements", Tata McGraw-Hill
7. Coduto D. and Do	onald	P., "Geotechnical Engineering Principle and practice", PHI Publisher.
8. Dr. Alam Singh, "	Mode	rn Geotechnical Engineering" IBT Publishers, 1992, 3rd Edition.
9. Dr. Kasmalkar B.	J., "(Geotechnical Engineering" 6. Gulhati S.K. and DattaManoj, "Geotechnical
Engineering", Tata	a McO	Graw-Hill,2005, 1st Edition.
10. Lambe and Whitm	an, "	Soil Mechanics" (VI Version), Willey Eastern Ltd., New Delhi
11. Peck R.B. and Ha	nson	W.E. T.H. Thornburn, "Foundation Engineering ", John Wiley
12. Purushothma Raj,	" Geo	otechnical Engineering",
13. Ranjan G. and Rac	A.S.	, "Basic and Applied Soil Mechanics",
14. Taylor D.W., "Fur	ndame	entals of Soil Engineering", John Wiley and Sons
15. Terzaghi and Peck	, "So	il mechanics in Engineering Practice", APH Publisher
16. Venkatramaiah, C	., "Ge	otechnical Engineering" WEL Publishers, 1993, 2nd Edition.
L		

Reference Codes	:	
1. IS: 2116 - Permissibl	e clay	, silt & fine dust contents in sand.

2. IS:1498 1970- Classification and identification of soils for General Engineering purposes.

Class & Semester	:	T. Y	. B	.Tech (Civil Engineering), Par	rt I, Sem-V		
Course Title	:	Lab-	-II (Geotechnical Engineering –I	Course Code:	:	CEL 317
Pre-requisites			:	Basic Civil Engineering.			
The prerequisite for t Construction materia	his l an	course d its p	e is t rope	to possess the fundamental knowledg erties.	e of civil engineering	g and	Building
Type of Course			••	Practical			
Course Domain			•	core			
Skills Imbibed			:	Cognitive, Affective domain, Psych	nomotor		
Course Assessmen	nt I	Metho	ods.	•			
Student is evaluated of	duri	ng Ext	tern	al Practical Examination			
Course Objectives 1. To provide str with knowled methods to de geotechnical s 2. To learn the o	uder ge o etern syst	nts wit of basic mine so ems ctives	th ba c er oil p of c	asic understanding of physical and m agineering procedures to identify fact properties. Students will acquire basic onducting various test on Soil materi	echanical properties ors controlling soil b c knowledge in engin al.	of so ehav leerir	il, together ior and ng design of
<i>Course Outcomes</i> 1. Students will be av 2.Students will learn	vare the	e about object	t the	e procedure adopted for conducting te s of conducting various tests on Geote	est on Soil material. echnical engineering	n	naterial.
Practical covered			:				
The laboratory v	wor	k shou	uld	include the following:			

Term work:

I) List of experiments:

- 5. Specific gravity determination by voluminometer / pycnometer / density bottle.
- 6. Sieve analysis, particle size determination and I. S. classification.
- 7. Determination of consistency limits and its use in soil classification.
- 8. Field density test by core cutter, sand replacement method.
- 9. Determination of co-efficient of permeability by constant head and by variable head method.
- 10. Direct shear test.
- 11. Standard proctor test.
- 12. Unconfined Compression Test

II) Industrial visit with report (Any One)

- 1. Visit to Earthwork site.
 - 2. Visit to Foundation construction work.

Class & Semester	:	T. Y. B.Tech (Civil Eng	ine	ering) l	Part I, Sem V		
Course Title	:	Environmental	Engineerin	g-I		Course Code:	:	CE 314
Teaching Scheme (Hours)	:	4 hours/weeks =4 minimum Tutorial= 00hr/w Practical= 02hr/w	x 13 weeks veek eek	= 52	2 hrs	Total Credits	:	04+00+01= 05
Evaluation Scheme (Marks)	:	CIE = (20+20+10) SEE = 50	IPE IOE EPE/EOE	:	50	Duration of SEE	:	3 hrs
Revision:	:	Second	•	-	•	Month	:	December 2017

Pre-requisites	:	Chemistry ,Basic Civil Engineering
The prerequisite for this cours	se is t	o possess the fundamental knowledge of civil engineering
Type of Course	:	Theory
Course Domain	:	Core
Skills Imbibed	:	Cognitive, Affective domain, Psychomotor

Course Assessment Methods:

Student is evaluated during Continuous Internal Evaluation (Internal Test I & Internal Test II) and Semester End Examination.

Course Objectives:

- 1. To demonstrated in-depth knowledge within environmental engineering and an awareness of potential social, economic, political, and environmental impacts of engineering practices.
- 2. An appreciation of the contribution of environmental engineers to the benefit of society and the responsibilities of a professional environmental engineer.
- 3. To study and design the various treatment processes for water treatment.

Course Outcomes:

- 1. To get knowledge of air and noise pollution
- 2. To make the students familiar with sources and its demand of water.
- 3. To understand the basic characteristics of water and itsdetermination.
- 4. To expose the students to understand the design of water supply lines.
- 5. To provide adequate knowledge about the water treatment processes and its design.
- 6. To have adequate knowledge on operation and maintenance of water supply and leakage Detection and Prevention.

Curriculum Content	Hours
UNIT 1 Air Pollution-Definition, sources of air pollution, types and classification of air pollutants, Primary and Secondary air pollutants and their importance, Atmospheric stability, mixing heights, plume types and meteorological parameters. Effects of air pollution on –Human, Animals, Materials and Vegetation. Global Effects-Photochemical smog, heat island, ozone depletion, acid rain. Control of air pollution. Noise Pollution-Soures, effects and Control.	8
UNIT 2 Sources of water, Factors considered in selection of source of water for treatment plant, Conveyance of raw water-, canals and pipelines, Hydraulics of conduits, Different types of pipes used and their suitability, designing of rising main., intake structure, different types of intake structures. Quality-Characteristics, Indian standards, Testing of raw water for physical, chemical and bacteriological parameters and their significance.	9
UNIT 3 Quantity-Population forecasting, different methods of population forecasting, rate of water consumption for various purposes, factors affecting demand of water, calculation of fire demand. Water Treatment: Necessity of water treatment processes. Different types of water treatment flow sheets. Aeration: Principle and Concept, Necessity, Methods, Design of cascade aerator.	9

9

9

UNIT 4

Sedimentation-Theory of sedimentation, types of suspended solids, determination of Settling velocity, Types of sedimentation tanks. Surface Loading, detention time, and design of PST, inlets and outlets arrangements

Theory of chemical coagulation, Factors affecting coagulation, turbidity, rapid mixing, coagulant dosage, characteristics of water, optimum pH, Coagulant aids, choice of coagulants,

common coagulants, coagulant aids like Bentonite clay, lime stone, silicates and poly electrolytes Rapid mixing

-Necessity, gravitational, mechanical, pneumatic devices, Slow mixing and flocculation, design of flocculation chamber, mean vel

ocity gradient "G" and power consumption, Concept of Plate settler and Tube settler.

UNIT 5

Filtration: Theory of filtration, Mechanism of filtration, filter materials, Types of filters-Rapid gravity filter, slow sand-filter and pressure

filter. Components, materials, underdrainage system, working and cleaning of filters, operational troubles, Design of filters.

Theory of disinfection-Factors affecting efficiency of disinfection. Types of disinfectants, Mathematical relationship governing disinfections variables. Theory of chlorination, break point chlorination, bleaching powder estimation.

Water softening methods-

lime-soda, ion exchange method and Demineralization.

UNIT 6

System of water supply-Continuous and intermittent system. Distribution of water-Different distribution systems and their components, layouts, Methods of supply like gravity, pumping and combination, Design of distribution system, determination of Balancing Capacity of ESR, Wastage and leakage of Water-Detection and Prevention, Water audit and Energy Audit Introduction of hydraulic modeling software's

Reference Books

9. H. V. N. Rao and M. N. Rao, "AirPollution", TMH Publications.

10. S. K. Garg ,"Water Supply Engg.", Khanna Publishers - NewDelhi.

11. Peavy and Rowe, "Environmental Engg.", McGraw Hill Publications

12. Stern,"Air Pollution Vol. I – IV", McGraw Hill.

:

13. Sharma and Kaur, "Environmental Chemistry", Goyal Publisher.

14. Water Supply and Treatment Manual: Govt. Of India Publication.

15. Steel and McGhee, "Environmental Engineering", McGraw Hill Publications.

16. Duggal K. N., "Water Supply", S. Chand and Company, 2007.

- 17. Fair G. M, Geyer J. C, and Okun D. A, "Water and Waster Water Engineering Vol. I and II", John Wiley Publication, 1966.
- 18. Hammer M. J., "Water and Waste Water Technology", Prentice Hall of India Private Limited, 1996.

19. Viessman W. and Hammer M. J, "Water Supply and Pollution Control", Harper Collins College

Publishers, 1993.

Class & Semester	:	T. Y. B	B.Tech (Civil Engineering), Pa	rt I, Sem-V		
Course Title	:	Lab-III	Environmental Engineering –I	Course Code:	:	CEL 318
Pre-requisites		:	Basic Civil Engineering.			-
The prerequisite for Construction materia	this 11 an	course is d its prop	to possess the fundamental knowledş erties.	ge of civil engineerin	ig and	l Building
Type of Course		:	Practical			
Course Domain		:	core			
Skills Imbibed		:	Cognitive, Affective domain, Psyc	homotor		
Course Assessme Student is evaluated	<i>nt I</i> duri	<i>Methods</i>	: al Practical Examination			
 3. To provide st samples also 4. An appreciation of a profession 	the on of $rail error of rail error of$	nts with b basic kno the contril nvironmen	asic understanding of physical chem wledge in engineering design of wate bution of environmental engineers to the tal engineer.	ical and biological particular supply systems. The benefit of society and	the re	ties of water esponsibilities
 Students will be a 2.Students will learn 	ware the	e about the objective	e procedure adopted for conducting t s of conducting various tests on Envi	est on water samples ronmental engineeri	ng-I.	
Practical covered	!	:				
The laboratory	wor	k should	include the following:			
Term work:						
Note-(a ,b&c are co a) List of expe (a) Determination	mp rim of (ulsory.) ents: (Any Eigl	nt)			
13. pH a 14. Hardr 15. Chlor	nd A ness rides	Alkalinity				

	16. Chlorine demand and residual chlorine
	17. Turbidity and optimum dose of alum
	18. Sulphates
	19. Fluorides
	20. Iron
	21. Most Probable Number (MPN)
	22. Ambient air quality monitoring for PM10/PM2.5, SO2& NO _x .
	23. Measurement of noise levels at various locations using sound level meter, Calculate cumulative noise level at any one location.
su	omitted and would form a part of the term work.
c)	Design of various components of water treatment plant
De	sign of various components of water treatment plant would be carried out based on the theory
co	
Er	vironmental Engineering-L
Er	vironmental Engineering-I. Or
Er c)	vironmental Engineering-I. Or Study of Software or programming for analysis of water distribution
Er C) sy	vironmental Engineering-I. Or Study of Software or programming for analysis of water distribution stem
Er C) sy Pr	Or Study of Software or programming for analysis of water distribution stem ogrammes available for the design of various water treatment plants would be used or Compute

Class & Semester	:	T. Y. B.Tech (Civil Engineering) Part	t I, Sem V		
Course Title	:	Construction Management	Course Code:	:	CE 315
Teaching Scheme (Hours)	:	4 hours/weeks = 4 x 13 weeks= 52 hrs minimum	Total Credits	:	04

		Tutorial= 00hr/w					
		Practical= 00hr/w	eek				
Evaluation Scheme (Marks)		CIE = (20+20+10) SEE = 50	IPE IOE EPE/EOE	:	Duration of SEE	:	3 hrs
Revision:	•	Second			Month	:	December 2017

Pre-requisites	:	Engineering Mathematics, Building Planning.						
This course requires the students to know about basic of mathematics, communication skill, market								
knowledge, basic term used in banking.								
Type of Course	:	Theory						
Course Domain	:	Core						
Skills Imbibed	:	Cognitive, Affective domain, Psychomotor						
Course Assessment Methods:								
Student is evaluated during Continuous Internal Evaluation (Internal Test I & Internal Test II) and Semaster								

Student is evaluated during Continuous Internal Evaluation (Internal Test I & Internal Test II) and Semester End Examination.

Course Objectives:

1. To familiarize students with basics of engineering management.

- 2. To understand the management of various resources like Material, Money, and Men required on site.
- 3.To study the various financial concepts in construction industry.
- 4. To understand the various on-site aspects like safety, planning etc. in details.

Course Outcomes:

- 1. Understand concepts and planning engineering management.
- 2. Understand the concepts and analysis of resource management on site.
- 3. Understand the financial concepts relating to construction industry.
- 4. Understand the importance of safety on site.

Curriculum Content	Hours
Construction Management	
UNIT 1	09
Time Management	
Introduction, steps in Project Management - work break down structure, Bar Chart, Mile stone	
chart, Gantt Chart.	
Activity On Arrow and Activity On Node	
Introduction to PERT: Concept of probability, normal and Beta Distribution, Central limit	10
theorem. Time estimates and calculations of project duration, critical path, slack, probability of	
project completion. (Problems).	

UNIT 2						
CPM : Introduction, Time esti Network compression – Least Resource allocation-Smoother Updating of networks– needs,	imates, floats, critical path. Cost and optimum duration. ning and leveling. steps, project duration, and calculation for updated network.	10				
		00				
UNIT 3		Vð				
Resource Management						
Men- Resource allocation – sr Material Management- define management. Objectives, Role Functions, Qualities of M	noothening and leveling. nition by international federation of purchasing and material Material Manager, Material forecasting.	10				
Inventory Control- Necessity,	Techniques such as ABC, EOQ, HML, VED, SDE, etc., lead-time,					
safety stocks. Assignment and Transportation Problems.						
Financial Management Objectives, managing working capital, Preparation of cash flow schedule based on funds available and project planning. Law of Diminishing Marginal Utility, Law of Substitution, Introduction to Engineering economics, importance, demand and supply, types of costs, Supply and Demand. Interest – simple, compound, continuous, effective. Value of Money – time and equivalence, tangible and intangible factors, introduction to inflation. Interest factors – Uniform series factors – derivations.						
UNIT 5						
Economic comparisons Discontinuing methods : Pres method, net present value, inte	ent worth method, equivalent annual cost method, capitalized cost ernal rate of return, Benefit Cost Ratio, Payback Period Method.					
UNIT 6						
Site Layout Factors affecting, Typical layout few major construction projects. Safety Engineering Accident cost, Injury sources and causes, Effective safety programs occupational health hazards, Personal protective equipment, Preparation of safety programs for construction works.						
Introduction to MIS and its Ap	pplication in Civil Engineering Industry.					
Reference Books	:					
1. Antill and Woodhead, "C.P 2. Barrie Paulsion, "Profession	.M. in Construction Practice", nal Construction Management". McGrew Hill Institution Edition					

- 3. Chitkara, "Construction Project Management", Tata MC Graw Hill.
- 4. Carl Chatfield and Timothy Johnson "Microsoft Project 2016 Step by Step".
- 5. Gopalkrishnan and Sunderasan, "An Integrated Materials Management".
- 6. K.S. Menon, "Purchasing And Inventory Control", Wheelar Publication.
- 7. Layland Blank and Torquin, "Engineering Economics"
- 8. Naik, "Project Management"
- 9. Pilcher R., "Principles of Construction Management",
- 10. Pilcher R., "Project Cost Control in Construction".
- 11. Punmia B.C., "CPM PERT"
- 12. Rustogi, "Material management",
- 13. Senagupta, "Construction Management and Planning", Tata McGraw Hill Publication.
- 14. Srinath, "CPM PERT"
- 15. S. Seetharaman, "Construction Management", Umesh Publications S.B. Nath Market, N. Delhi.
- 16. Taylor G.A., "Management and Engineering Economics"
- 17. Zamb L.C., "Inventory Control"

Class & Semester	:	, , , , , , , , , , , , , , , , , , ,	T. Y. B.Tech (Civil Engineering), Part III, Semester V								
Course Title	:	Introduction to	o Fo	oreigi	n Language			Course Code:	:	AC 330	
Teaching Scheme (Hours)	:	2 hr /week= 2	2 hr /week= 2 x13= 26 hours							Nil	
Evaluation Scheme (Marks)	:	Assignments Viva voce	:	50 25	Written Test Grand Total	:	25 100	Duration of Exam	:	Not Applicable	
Revision	:	Third	ihird						:	June 2018	

re-requisites . The test of an observation to the tangaage, it has no any pre-requisites
--

Type of Course	••	Audit Course at institute level
Course Domain	••	Linguistics
Skills Imbibed	••	Cognitive: Understand, Predicting Situation, Comprehend, Affective : Receive, Listen, Respond, Showing self-reliance, Organize Psychomotor: Imitation, adaptation, articulation, origination

Course Assessment Methods:

The students will be given five assignments each for 10 marks. At the end of the course, there will be a written test of 25 marks and a viva voce of 25 marks. There will be assessment for a total of 100 marks. Based on the marks obtained, they will be awarded with a grade similar to other credit courses. Though it is an audit course, obtaining passing grade is essential.

Course Objectives:

- 1. To make the students able to communicate and translate in foreign languages for the *technical and scientific documentation*, beneficial to Defense and other Government sector services.
- 2. To make them globally competent in the era of industrial liberalization.
- 3. To complement their core studies in international business.
- 4. To make them confident while opting for better career prospects in Multinational Companies (MNCs) for technical and scientific translation/ interpretation tasks while working for joint ventures or collaborative partnership.

Course Outcomes:

- 1. The students will be able to acquire a good knowledge the basic grammar of foreign language and learn Alphabet, Common Words and Phrases in foreign language.
- 2. The students will also be able to learn to read the simple texts in foreign language.
- 3. The students would be able to speak a little using the greetings, well wishes etc. in Foreign Language.
- 4. The students will learn to count numbers, answer to the questions like, what is your name, surname, tell age, and can initiate little communication in Foreign Language.
- 5. The students can also translate simple sentences in foreign language.

Curriculum Content	Hours				
	05				
Unit I: General Information on Basic Grammar of the foreign language, Introduction to Alphabet.					
Unit II: Gender of Noun, Number of Noun, Pronouns, Adjectives, Verbs and their usage in simple					
sentences, Numbers (up to 10), Simple Greetings in foreign language.					
Unit III General Questions in foreign language, like What is your name/surname?Who/What is					
this? Etc.					
Unit IV: Simple narration about self/family/friend/University in foreign language chosen for					
studies. Practicing the learnt topics in the class itself.					
Unit V: Formation of simple sentences using Parts of Speech, Information on Cases, One or Two					
simple lessons from any book.					
Unit VI: Basic information on Country & Culture of language under study.					
	04				
Reference Books :					

- 1. V.N.Wagner and V. G.Ovsienko, Russian, People's Publishing House, New Delhi.
- 2. S. Khavronina and A. Shirochenskaya, Russian in Exercises.
- 3. Genki Japan Times
- 4. Aural Comprehension in Japanese Osamu & Nobuko Mizutani.
- 5. An Introduction to Modern Japanese Osamu & Nobuko Mizutani.
- 6. Japanese for Today Y. Yoshida.
- 7. Lagune 1(Full set), Published by Langers, (An imprint of Saraswati House Pvt.Ltd), New Delhi 1 10002 (India).

Class & Semester	:	T. Y. B.Tech (Civ	Y. B.Tech (Civil Engineering) Part II, Sem VI							
Course Title	:	Theory of Struct	ures-II			Course Code:	:	CE 321		
Teaching Scheme (Hours)	:	4 hours/weeks = 4 minimum Tutorial= 01hr/w Practical =	4 hours/weeks = 4x 13 weeks= 52hrs minimum Tutorial= 01hr/week Practical =				:	04+ 01 +00 =05		
Evaluation Scheme (Marks)	:	CIE = (20+20+10) SEE = 50	IPE IOE EPE/EO E	::	+50 =150	Duration of SEE	:	3 hrs		
Revision:	:	Second	Second					June 2018		

Pre-requisites	:	Engineering Mechanics, Strength of Material, Theory of Structures-I			
Basic Knowledge of determinate and indeterminate structures, classical methods of analysis of indeterminate					
beams, Shear Force Diagram and Bending Moment Diagram, Conjugate Beam Method, Unit Load Method,					

Basics of Matrix Operation		
Type of Course	:	Theory
Course Domain	:	Core
Skills Imbibed	:	Cognitive, Affective domain, Psychomotor

Course Assessment Methods:

Student is evaluated during Continuous Internal Evaluation (Internal Test I & Internal Test II) and Semester End Examination.

Course Objectives:

- 1. To understand application of classical methods for the analysis of indeterminate structures.
- 2. To learn the concepts and use of matrix method in structural analysis.
- 3. To understand the use of ILD for determinate and indeterminate structure.
- 4. To learn the concepts of moving loads and its effect on structures.
- 5. To understand structural behavior of three and two hinged arches.
 - 6. To understand approximate methods of analysis for multistoried rigid jointed frames.

Course Outcomes: On completion of the course, the students will be able to:

- 1. Analyze indeterminate structures using Classical methods.
- 2. Determine unknown forces of indeterminate structures using Flexibility Method.
- 3. Compute unknown displacements of indeterminate structures using Stiffness Method.
- 4. Develop Influence Line Diagram for determinate and indeterminate structures.
- 5. Demonstrate the behavior of arches and their methods of analysis.

6. Analyzemultistory frames subjected to gravity loads and lateral loads

Curriculum Content	Hours
UNIT 1 Analysis of indeterminate Structures by Displacement Methods	9
A) Slope deflection method	
B) Moment distribution method	o
Applications to Non sway and sway frames	ð
UNIT 2	9

Flexibility method of analysis trusses, and rectangular plane	Matrix Formulation, Application to beams, pin-jointed plane frames. Settlement of supports	9
UNIT 3		
Stiffness methods of analysis: plane trusses and rigid jointed	Formulation of stiffness matrix. Applications to beams, pin jointe rectangular plane frames, Settlement of supports	8
UNIT 4		9
Influence lines		
Basic Concept of Influence I SF and BM at a given section Influence at a point due to sec Influence lines for trusses, inf	nes, construction of Influence line diagrams for support reaction on of beam. Application of Muller-Breslau's principle, Maximu ries of concentrated load, Absolute Maximum shear and momer uence line diagram for statically indeterminate beams	s, m it,
UNIT 5		
Arches – Semi-Circular, Line Lines	r, Parabolic arch. Three hinged and two hinged arches, Influence	
UNIT 6		
Approximate methods of anal	ysis of multistoried, multi bay rigid jointed frames for Gravity ar	nd
Lateral Load, Substitute Fram	e Method, Portal method, Cantilever method	
Text Books	:	
1. S.S.Bhavikatti, "Struc	ural Analysis", Vol.I&Vol.II, New Age Publisher	
2. Reddy C. S., "Basic S	ructural Analysis", Tata McGraw Hill Publication Company Ltd.,	
3. T.S.Thandavmoorthy,	"Structural Analysis", Oxford Publication	
Reference Books	:	
1. Pandit-Gupta, "Structural A	nalysis A Matrix Approach", Tata McGraw Hill Publication	
2. Pandit and Gupta, "Theory	of Structures", Tata McGraw Hill Publication	
3. Negi and Jangid, "Structura	l Analysis", Tata McGraw-Hill Publishing Company Ltd., New D	elhi,
4. Vazirani and Ratwani, "An	lysis of Structures (Vol. I and II)", Khanna Publication, Delhi	
5. Leet, Glibert, "Structural An	alysis", McGraw Hill Publication	
6. Gere and Weaver, "Matrix A	analysis of Structures", , CBS Publishers, New Delhi.	
7. Junnarkar S.B., "Mechanic	of Structures (Vol. II)", Charator Book Publishing House.	

8. West H.H. and Geschwindner L.F., "Fundamentals of Structural Analysis", Wiley.						
9. Hibbeler R.C., "Structural A	Analy	sis", Pearson Education India				
10. Norris C.H., Wilbur J.B. a	nd U	tku S., "Elementary Structural Analysis", McGraw-Hill				
·····						
11. Thadani B.N., "Modern M	letho	ds in Structural Mechanics - I". Asia Publishing House, New				
Delhi						
12 Wang C K "Indetermina	te Sti	uctural Analysis" Tata McGraw-Hill Publishing Company				
12. Wang C. K., Indetermina	ic Su	uctural Analysis, Tata MeGraw-Thir Fublishing Company				
13 Davdas Manon "Structural	Anal	veie" Narosa Publication				
13.Devuas Menon Structurar	13. Devuas menori Structural Analysis, marosa Publication					
14 Decide a Manage "A decide a differentia" Name a Dablication						
14. Devuas menori Auvanceu Suuciurai Anarysis, marosa Publication						
	1					
Reference Codes	:					
0						

Class & Semester	:	T. Y. B. Tech (C	ivil Engir	neering)	Par	rt II, Sem	VI			
Course Title	:	Water Resources E	ter Resources Engineering -I Course Code: :					CE 322		
Teaching Scheme (Hours)	:	4 hours/weeks = 4x minimum Tutorial= 00hr/wee	4 hours/weeks = 4x 13 weeks = 52 hrs minimum Tutorial= 00hr/week			Total Credits	:	04+00+00 =04		
		Practical= 00hr/week								
Evaluation Scheme (Marks)	:	$\begin{array}{c c} \text{CIE} &= (20 + 20 + 10) \\ \text{SEE} &= 50 \\ \text{Total} = 100 \end{array} \begin{array}{c} \text{IPE} & : \\ \text{IOE} & : \\ \text{EPE/EOE} & : \end{array}$			Duration of SEE	:	3 hrs			
Revision:	:	Second				Month	:	December 2017		

Pre-requisites	Mathematics, Engineering Mechanics, Fluid Mechanics						
This course requires the studen statics & dynamics.	nt to	know about the basic concepts regarding mathematics, laws of mechan	nics, fluid				
Type of Course	:	Theory					
Course Domain	:	Core					
Skills Imbibed	:	Cognitive, Affective domain, Psychomotor					
Course Assessment Met	hoa	ls:					
Student is evaluated during C	Con	inuous Internal Evaluation (Internal Test I & Internal Test II) and S	emester				
End Examination.							
Course Objectives:							
 To impart the basic knowled To know various hydro met To create awareness about the To understand the important 	dge teor floo ice c	of importance of Hydrology & irrigation in water resources developme ological parameters and their estimation. ds, their estimation using various methods. of irrigation in Indian agricultural industry considering cropping pattern	nt. s.				
Course Outcomes:							
 Apply the knowledge of est Design of efficient hydrauli To develop different metho To develop the methods of 	tima ic str ds o con	tion of hydro meteorological parameters. ructures. f efficient irrigation and water conservation. sumptive use of surface water and groundwater.					
Curriculum Content Hours							
UNIT 1			10				
Introduction of Hydrology:	0.000	of hydrology, the hydrologic gyale					
Precinitation.	ope	or nydrology, the nydrologic cycle.					
Forms and types of precipitati rainfall curves, Hyetograph. D Evaporation:	on, Detei	Methods of measurement, Graphical representation of rainfall - Mass mination of average precipitation over the catchment.					
Process, factors affecting, mea	asur	ement and control of evaporation.					
Process, Factors affecting and	me	asurement of Infiltration.					
UNIT 2			8				
Runoff:							
Factors affecting runoff, Deter	rmir	nation of annual runoff, Rainfall runoff relationship.					
Hydrograph:							
Storm hydrograph, Base flow and Separation of base flow, direct runoff hydrograph, Unit hydrograph –							
theory – assumptions and limi	tatio	ons. Derivation and use of unit hydrograph, Scurvehydrograph.	0				
UNII 3 Streem geneinge			8				
Stream gauging: Selection of site, discharge measurement by Area velocity method, slope Areamethod							
Floods:	Floods.						
Estimation of peak flow- empirical equations, rational method, Importance of Designflood, standard							
project flood, maximum probable flood, Introduction to flood frequency analysis.							

LINIT A		8			
Ground water hydrology:		0			
Occurrence distribution and cla	assification of ground water. Darcy's law Aquifer parameters-				
Permeability, specific yield, spe	ecific retention, porosity, storage coefficient Transmissibility.				
Hydraulics of well under steady	<i>y</i> flow conditions in confined and unconfined aquifers. Specificcapacity				
of well Recuperation Test con	structional features of Tube wells and Open wells				
UNIT 5		10			
Introduction to irrigation:					
Definition and necessity of irrig	pation ill-effects of irrigation Surface Sub-surface Sprinkler irrigation				
Drip Irrigation Water logging a	and land drainage				
Water requirement of crops:					
Principal crops and crop season	s cropping pattern and crop rotation. Classes and availability of				
soilwater, depth and frequency	of irrigation Duty. Delta, Base Period and their relationship, factors				
affecting duty, methods of impr	oving duty.				
Assessment and efficiency of ir	rigation water, Gross Command Area, CulturableCommand Area				
and command area calculations	based on crop waterrequirement.				
Estimation of evapo-transpiration	on by blaney-criddle method and penman method.				
UNIT 6		8			
Minor Irrigation Works:		Ŭ			
General layout, main componer	nts and functioning of –				
1. Percolation Tank, 2. K.T.We	ir. 3. Bandhara irrigation 4. Lift irrigation				
Watershed Management:	2, 01 2 anoma 211, 5 ano 211 211 211 8 anon				
Need and importance of waters	hed management. Soil conservationmeasures. Techniques of Rainwater				
and groundwater harvesting.	······································				
6					
Text Books	:				
1. Irrigation Engineering – S. K	. Garg – Khanna Publishers, Delhi.				
2. Irrigation, Water Resources a	and Water Power Engineering – Dr P.N. Modi				
3. Irrigation and Water Power E	Engineering – Dr Punmia and Dr.Pande – Laxmi Publications, Delhi				
4. 'Engineering Hydrology' – D	r. K. Subramanya., -Tata McGraw Hill, New Delhi.				
5. Hydrology – Dr. P Jayarami	Reddy, Laxmi Publications, New Delhi				
6. 'Engineering Hydrology' – D	Dr. Raghunath H.M New Age International Publishers.				
7. Watershed Management in Ir	ndia – J.V.S.Murthy – Wiley Eastern Publications, Delhi.				
8. Irrigation Engineering – Dah	igaonkar Asian Book Pvt Ltd				
9. Irrigation Engineering, Ragh	unath, WILEY,				
Reference Books	:				
1. R.K.Sharma, 'Hydrology and	water resources', Dhanpatrai and sons, New Delhi.				
2. Varshney, Gupta and Gupta,	'Theory and design of irrigation structures vol. I and II and III,Newchand a	and			
Brothers.					
3. Michael, 'Irrigation Theory a	nd practice', Vikas Publications House.				
4. Jaspal Sing, M.S.Acharva, A	run Sharma, 'Water management', Himanshu Publications.				
5. Design of M.I. and Canal Str	ucture – Satyanarayan and R. Murthy.				
6. Water and Soil Conservation	– Ghanshyam Das.				

Class & Semester	:	: T. Y. B.Tech (Civil Engineering) Part II, Sem VI					
Course Title	:	Transportation Engineering-II	Course Code:	:	CE 323		
Teaching Scheme (Hours)	:	4 hours/weeks = 4x 13 weeks= 52 hrs minimum Tutorial= 00hr/week Practical= 00hr/week	Total Credits	:	04+ 00 +00 =04		

Evaluation Scheme (Marks)	:	CIE = (20+20+10) SEE = 50 Total= 100	IPE IOE EPE/EOE	:	Duration of SEE	:	3 hrs
Revision:	:	Second			Month	••	December 2017

Pro-roquisitos	•	Geotechnical Engineering.
1 re-requisites	•	
This course requires the stude	nt to	know about the basic of civil engineering, fundamentals of geotechnical
engineering, water resources e	engin	eering and structural engineering etc.
Type of Course	•	Theory
Type of course	•	
Course Domain	•	Core
	•	
Skills Imbibad	•	Cognitive Affective domain Psychomotor
Skills Intoiveu	•	

Course Assessment Methods:

Student is evaluated during Continuous Internal Evaluation (Internal Test I & Internal Test II) and Semester

End Examination.

Course Objectives:

1. To familiarize students with sub-branches of Transportation Engineering such as railway engineering, tunnel engineering, dock and harbour engineering.

2. To make students learn various terminologies related with railway engineering, tunnel engineering, dock and harbour engineering.

3.To study the various components involved in railway engineering, tunnel engineering, dock and harbour engineering.

4. To understand the planning aspect involved in railway engineering, tunnel engineering, dock and harbour engineering.

Course Outcomes:

1. Apply basics of railway engineering, its components and geometric design.

2. Signalling and interlocking in railway engineering, construction and maintenance of

railway track and modern trends in railways.

3.To Understand principles and basics of tunnel engineering.

4. To Understand principles and basics of dock and harbor engineering.

Curriculum Content

Hours

RAILWAY ENGINEERING

UNIT 1

a) Introduction, History, Organizational structure of Indian railways, railway lines classification based on speeds, Modernization in Railways and railway tracks, High speed rail tracks, metro rail, bullet train, hyper loop train concept.

b) Permanent Way: Types of rail sections, Components, coning of wheels. Rail creep, Rail defects, Rail joints, welding of rails, short welded rail (SWR), long welded rail (LWR) and continuously welded rail (CWR), sleepers requirement, Sleeper density, spacing, and types, Rail fittings, Elastic fastenings, bearing plates, anti-creep devices, check and guard rails, Ballast requirements and specification, Formation, Different cross sections of Track in cutting and embankment, suitability of drainage.

UNIT 2

a) Geometric design: Alignment, gradient, horizontal curves, Grade Compensation on curves super elevation, design problems on above. Speed on curves, safe speed on curves using Indian railway formula only for fully transitioned curves. Gauge widening. Points, crossing and turnouts

b) Points & Crossing: Terms used, standard points and crossings, design of simple turnout various types of track junctions.

c) Stations and yards: purpose, location, site selection, types and general layouts of terminus, **8** Junction.

d) Signalling and interlocking—Introduction, Construction and maintenance of railway track: methods, material required per KM oftrack, tools and plant used for plate laying, maintenance of Track, Modern trends in railways. Visit to railway station.

TUNNELING

UNIT 3

a) Introduction, Advantages and disadvantages of tunnel with respect to open cuts, Tunnel surveying, Surface surveys, Transferring centerline, Setting out and Transfer of Levels. Underground. Criteria for Selection of size and shape of tunnels, Factors affecting the methods of Tunneling.Geological investigation for tunnels and its importance, tunnel alignment, tunnel shafts, pilot tunnels.

b) Tunneling in hard rock, (TBM).

c) Tunneling in soft materials: shield methods. Tunnel lining (rock bolting and guniting), Safety measures, ventilation, lighting and drainage of tunnels.

UNIT 4

12

14

8

5

5

Driving tunnels in hard ground Sequence of operation and typical distribution of time for each operations, Meaning of the term 'Faces of Attack', Drill blast method of tunneling for hard strata, Different patterns of drilling. Blasting and explosives

Meaning of the terms, types of explosives, method of blasting in brief.

Ventilation Meaning of the term, requirements a ventilating system, Methods of ventilation with advantages and disadvantages. Lighting and aspects of drainage in brief. Method of supporting roof consisting of shot creating. Cement grouting, rock bolting, Cast in-situ and precast lining.

DOCK AND HARBOUR ENGINEERING

UNIT 5

a) Introduction, Definition, Requirements, classification of harbors with examples, Factors affecting growth of port, Major Ports in India and abroad, Planning a Port, Selection of ideal location of harbor, Introduction to dredging.

Inland water transport in India, tides, waves, erosion, beach drift, littoral drift sand bars, coast protection, classification of ports and harbors, sites selection, break waters, jetties, wharves, piers, facilities required.

b) Types of dock, navigational aids, lighthouses, terminal buildings special equipments, Containerization.

UNIT 6

Breakwater and materials of construction for breakwater, Introduction to design of break waters, Dock, Bulkhead and Sea Walls, Design Considerations and Construction Materials, Revetments, Water front structures, Wharves, Jetty, Dolphins, Different types of dock fenders, Uses of wet docks and Dry/ Repair docks. Port facilities, Transit sheds and warehouses. Visit to dock, harbor or port.

or port.							
Text Books	sooks :						
1. Principals of Railway Engineering - Saxena and Bindra, Dhanpat Rai& Sons							
2. Tunnel, Bridge and Railway	y Eng	gineering- Saxena and Bindra - Dhanpat Rai & Sons					
3. Dock and Harbor Engineerin	ng Oz	zaChartor pub. House					
Reference Books	••						
1. Rangwala S. C., "Principles	s of R	ailway Engineering", CBS Publishers, 1965, 2nd Edition.					
2. Saxena S.C., Arora, "A Tex	tboo	k of Railway Engineering", Dhanpat Rai and Sons, Delhi.					
3. Mundrey J.S., "Railways Th	rack	Engineering', Tata Mcgraw Hill, New Delhi.					
4. SaxenaSubhash C., "Tunne	l Eng	ineering", Dhanpat Rai and Sons, New Delhi.					
5. Vazirani V.N. and Chandol	a S.P	., "Transportation Engineering Volume 1".					
6. Mathur G. N. and Chawla A. B., "Productivity and Speed Tunneling", CBIP, 2003.							
7. Megaw T. M. and Bartlett	7. Megaw T. M. and Bartlett J., "Tunnels Planning, Design, Construction", EHJW, 1983, 8. Murthy G. V.,						
'Tunnels and Elements of Docks and Harbours''.							
9. Saxena S. C., "Tunnel Engineering", Dhanpat Rai and Sons, 1984, 1st Edition.							
0. Bindra S. P., "Dock and Harbour Engineering", Dhanpat Rai Publications, 1979, 1st Edition.							
11. Coaster Engineering Manu	ials V	Volume I and II, US Army Corps of Engineers, Vicksburg.					
12. Quinn, "Planning and cons	struct	tion of Docks and Harbours", Tata McGraw Hill.					

13. Dock, Harbor and Tunnel Engineering-Shrinivasan- Chartor pub. House.

Class & Semester	:	T. Y. B.Tech (Y. B.Tech (Civil Engineering) Part II, Sem VI						
Course Title	:	Environmental	vironmental Engineering-II Course Code: : CE						
Teaching Scheme (Hours)	:	3 hours/weeks = 4x 13 weeks= 52 hrs minimum Tutorial= 00hr/week Practical= 2hr/week				Total Credits	:	04+ 01 +00 =05	
Evaluation Scheme (Marks)	:	CIE = (20+20+10) SEE = 50 Total= 100	IPE IOE EPE/EOE	:	50	Duration of SEE	:	3 hrs	
Revision:	:	Second				Month	:	December 2017	

Pre-requisites	:	Chemistry, Basic Civil Engineering Knowledge				
This course requires the student to know about the method of analysis, Titration Basics of civil Engineering,						
Type of Course	:	Theory				
Course Domain	:	Core				
Skills Imbibed	••	Cognitive, Affective domain, Psychomotor				

Course Assessment Methods:

Student is evaluated during Continuous Internal Evaluation (Internal Test I & Internal Test II) and Semester End Examination.

Course Objectives:

- 4. To describe wastewater , its sources, characteristics and collection system
- 5. To design the various treatment processes for wastewater treatment.

- 6. To study different operational problems and their remedies .
- 7. To explain various aspects of solid waste management.
- 8. To outline the effects of air pollution and its control measures.

Course Outcomes:

- At the end of this course students will be able to learn to
- 1 Explain sources, characteristics and collection system of wastewater.
- 2 Design the various treatment processes for wastewater treatment.
- 3 Apply the knowledge to solve different operational problems and their remedies
- 4 Understand importance of solid waste management.
- 5 Describe the effects of air pollution and its control measures.

	•
Curriculum Content	Hours
UNIT 1	
Introduction	8
Objective, Basic design considerations like Engineering , Environmental Process, flow diagrams, Design Period. Characteristics of wastewater	
Physical, Chemical and Biological characteristics, Wastewater sampling and analysis, and practical Significance of test results.	
River Sanitation	
Self-purification of natural streams, Stream standards, effluents Standards, Oxygen Sag Curve.	9
UNIT 2	
Sewerage Flow	
Sources of sewage, Variations in sewage flow, storm-water runoff, ground water infiltration.	
Design of sanitary sewers, Minimum size of sewer, velocities in sewers and gradient of sewers.	
Sewer appurtenances i.e. manholes, street inlets, flushing devices, Vent pipes etc. Pumping of sewage, types of pumps for sewage pumping.	
	9
UNIT 3	
Wastewater Treatment	
Theory and design of primary treatment UNITs.	
Objective, Basic design considerations like Engineering , Environmental Process, flow diagrams, Design Period. Characteristics of wastewater Physical, Chemical and Biological characteristics, Wastewater sampling and analysis, and practical Significance of test results. River Sanitation Self-purification of natural streams, Stream standards, effluents Standards, Oxygen Sag Curve. UNIT 2 Sewerage Flow Sources of sewage, Variations in sewage flow, storm-water runoff, ground water infiltration. Design of sanitary sewers, Minimum size of sewer, velocities in sewers and gradient of sewers. Sewer appurtenances i.e. manholes, street inlets, flushing devices, Vent pipes etc. Pumping of sewage, types of pumps for sewage pumping. UNIT 3 Wastewater Treatment Theory and design of primary treatment UNITs. Screens: Types of screens, design of screen chamber, disposal of Screenings. Grift Chamber: Sources of grit, velocity control in grit chamber, design of grit chambers ncluding proportionalflow weir, disposal of grit,	
Grit Chamber: Sources of grit, velocity control in grit chamber, design of grit chambers	9
including proportionalflow weir, disposal of grit,	
Sources of oil and grease, importance of removal, methods of oil and grease removal, design of skimming tanks.	9

Primary Sedimentation: Necessity, design of PST with inlet and outlet details,	
Primary Sludge and its disposal.	
UNIT 4	
Theory and Design of Aerobic Secondary Treatment UNITs	
Activated sludge Process: Biological principle, modification of ASP, sludge volume index, sludge bulking and control.	
 Trickling filter: Biological principle, different T.F. And their characteristics, Deign of standard rate or High ratefilters, single stage and two stage filters, Re circulation, Ventilation, Operational problems, Control measure, Rotating Biological Contactor. Theory and Design of Anaerobic Treatment Units 	8
Septic tanks, suitable conditions and situations, biological Principle, method of treatment and disposal of septic Tank effluent.	
UNIT 5	
Solid Waste Management :	
Definition, types, sources, characteristics. Functional outline, Generation, storage, collection, Processing techniques. Methods of treatment, Composting, Incineration, Pyrolysis, Sanitary land filling, Concept of Hazardous waste management.	
UNIT 6	
Emerging Technologies for Waste Water Treatment	
Centralized sewage treatment systems, Consequences of centralized wastewater treatment, Objectives of small and decentralized wastewater treatment systems Advantages of Decentralized Wastewater Treatment, Applications of decentralized wastewater management to: a) Root zone Technology Principle, types of plants used, advantages, disadvantages b) Constructed wastelands process description, advantages and disadvantages c) Duckweed ponds process description, advantages and disadvantages d) Fluidized aerobic bed technology Principle, process description, advantages Disadvantages e) Up flow sludge Blanket Reactors (UASBR) - Principle, design, advantages and disadvantages	
Reference Books :	
1. Bhide, A.D., and Sunderasen B.B., "Solid Waste Management in Developing	
Countries", Indian National Scientific Documentation Centre, New Delhi, 1998.	

- 2. Canter, "Environmental Impact Assessment", TMH Publication, 2000.
- 3. Hammer and Hammer, "Water and Wastewater Technology", Prentice Hall Publication, 2008
- 4. Garg S. K, "Sewage Disposal and Air Pollution Engineering", Khanna Publishers, 2000.
- 5. Garg S.K., "Wastewater Engineering", Khanna publication, 2000
- 6. Gray N. F., "Water Technology", Butterworth-Heinamann, 2002
- 7. Masters G. M., "Introduction to Environmental Engineering and Science", 2004.
- Metcalf and Eddy, "Waste Water Engineering Treatment and Disposal", Tata Mc-Graw-Hill Publication, 2003.
- **9.** Peavy H. S., Rowe D. R., and Tchobanoglous, "Environmental Engineering", McGraw-Hill Book Company, 1985.
- 10. Rao M.N. and Rao H.V.N., "Air Pollution", Tata McGraw Hill, 2006.
- 11. Rao P. V., "Environmental Engineering II", Tata McGraw Hill Publication, 2003
- 12. Soli J. Arceivala, "Wastewater Treatment For Pollution Control", 1999
- Viessman W. and Hammer M. J, "Water Supply and Pollution Control", Harper Collins College Publishers, 1993.
- 14. Manual on sewerage and sewage Treatment published by Ministry of Urban Development Govt. of India Msy-2000. 35 PDOP-4-59-85-97, Ministry of Urban development
- 15. "Manual on Municipal Solid Waste and Management", Government of India Publication, 2000.

Class & Semester : T. Y. B.Tech (Civil Engineering) Part II, Sem VI											
Course Title	:	Geotechnical Eng	Seotechnical Engineering-II Course Code: : CE325								
Teaching Scheme (Hours)	:	3 hours/weeks = 3 minimum Tutorial= 00hr/w Practical= 02hr/w	3 x 13 weeks veek eek	Total Credits	:	04+ 00 +01 =05					
Evaluation Scheme (Marks)	:	CIE = (20+20+10) SEE = 50	:	Duration of SEE	:	3 hrs					
Revision:	:	Second	•		Month	:	December 2017				

Pro-ronuisitos	•	Soil Mechanics and Geotechnical engineering –I.
1 re-requisites	•	5 5
The prerequisite for this cours	se is t	o possess the fundamental knowledge of Soil engineering and Geotechnical
The prefequisite for this court		possess the fundamental knowledge of son engineering and Geoteerinear
engineering-I.		
T CC		
<i>I ype of Course</i>	:	Theory
Course Domain	•	Core
Course Domain	•	core
	•	Cognitive Affective domain Psychomotor
Skills Imdidea	•	Cognitive, Affective domain, 1 Sychomotor
Course Assessment Meth	ode.	

Course Assessment Methods:

Student is evaluated during Continuous Internal Evaluation (Internal Test I & Internal Test II) and Semester End Examination.

Course Objectives:

1. To provide a coherent development to the students for the courses in sector of Geotechnical Engineering & Soil Improvement Techniques etc.

2. To involve the application of scientific and technical principles of planning, analysis, design of foundation along with soil improvement techniques.

3.To study the bearing capacity of soil and settlement calculation in geotechnical engineering.

4. To present the foundations of many basic Engineering tools and concepts related Geotechnical Engineering.

Course Outcomes:

- 1. Understand various field test for bearing capacity of soil and to investigate the soil.
- 2. Determine the pre consolidation pressure and consolidation in soil.
- 3. Understand the concept of bearing capacity and its analysis by using various equations.
- 4. Evaluate and understand the consolidation settlement and settlement in soil.
- 5. Design the various types of foundation and its calculations.

Curriculum Content	Hours
UNIT 1	
Introduction	
Functions of substructure, Common Types of foundations viz. shallow and deep foundations, isolated and combined footings raft pile well foundations suitability and applications	6
Minimum depth of footing, effect of surcharge load on foundations, allowable soil pressure, and serviceability requirements.	
UNIT 2	
Soil Exploration	7
Purpose, importance, methods of soil exploration, subsurface exploration, trial pits, boring: method of borings. Number of boreholes, depth and spacing of boreholes, types of test to suit the soil conditions, Location of water table, Sampling: Disturbed And Undisturbed Samples, Field tests: SPT, DCPT, SCPT, pressure-meter test, plate load test, field vane shear test.	

UNIT 3

Consolidation

Spring analogy, Terzaghi's theory of one dimensional consolidation, Lab consolidation test, determination of consolidation parameters viz. cc cv , mv and av. Square root and logarithm of time fitting method. Rate of settlement, normally and over consolidated soils, Determination of pre consolidation pressure, Evaluation of consolidation settlement.

UNIT 4

Shallow Foundation

a) Bearing Capacity

Terzaghi's bearing capacity analysis, Meyerhof, Hansen's and basic equations for strip, rectangular and round footing, effect of various BC factor on bearing capacity, Use of field test (SPT and Plate Load) data for bearing capacity determination, bearing capacity of rocks, RQD concept.

b) Settlement

Total and differential settlement, Tolerable settlement, IS Criteria, Concept of pressure bulb. **Slope Stability:** Stability of finite slopes- slip circle method, Semi graphical and graphical methods, location of critical slip circle center, Friction circle method, , Stability number concept and its use.

c) Design of Shallow Foundation

Concept of isolated and floating foundation, Raft foundation.

UNIT 5

Pile Foundation

Pile classification, Carrying capacity of pile, static and dynamic methods, pile load test, group action, Rigid block method, Negative skin friction, Settlement of single and group of piles. **UNIT 6**

Well Foundation and Caissons

Element of wells, types, methods of construction, tilt and shift, remedial measures, **Pneumatic caissons**: Caisson disease.

Sheet Piles: Classification, Design of cantilever sheet pile in cohesionless and cohesive soils. Design of anchored sheet pile by free earth support method. Cellular Cofferdams: Types, cell fill stability considerations.

UNIT 6

Well Foundation and Caissons

Element of wells, types, methods of construction, tilt and shift, remedial measures, Pneumatic caissons: Caisson disease.

Sheet Piles: Classification, Design of cantilever sheet pile in cohesionless and cohesive soils. Design of anchored sheet pile by free earth support method. Cellular Cofferdams: Types, cell fill stability considerations.

6

7

7

6

Text Books	:										
 Textbook of Soil M 2010by V.N.S. Murt An Introduction to S 	 Textbook of Soil Mechanics and Foundation Engineering: Geotechnical Engineering Series Paperback – 2010by V.N.S. Murthy. An Introduction to Soil Mechanics- Arnold Verruijt, Springer International Publishing. 										
Reference Books	:										
5. Soil Mechanics an	d Foi	undations-Dr. B.C.Punmia, Dr. Arun Jain and Dr. Ashok.K. Jain - Laxmi									
Publication.											
6. Arora, "Soil Mech	nanics	and Foundation Engineering", Standard Publishers and Distributors									
7. Bowles J. E., "Fou	ndati	on Analysis and Design", McGraw-Hill International.									
8. Dass B. M., "Foun	datio	n Engineering",									
9. Dr. Kasmalkar B.	J., "Fe	oundation Engineering"									
10. Nayak N. V., "Fou	Indati	on Design Manual".									
11. Ranjan Gopal and	Rao A	A. S., "Basic and Applied Soil Mechanics",									
12. Dr. Alam Singh, "I	Mode	rn Geotechnical Engineering" IBT Publishers, 1992, 3rd Edition.									
13. Dr. Kasmalkar B.	J., "C	Geotechnical Engineering" 6. Gulhati S.K. and DattaManoj, "Geotechnical									
Engineering", Tata	n McC	Graw-Hill,2005, 1st Edition.									
14. Peck R.B. and Har	nson V	W.E. T.H. Thornburn, "Foundation Engineering ", John Wiley									
Reference Codes	:										
15. IS: 2116 - Permiss	15. IS: 2116 - Permissible clay, silt & fine dust contents in sand.										
16. IS:1498 1970- Cla	16. IS:1498 1970- Classification and identification of soils for General Engineering purposes.										

Class & Semester	:	T. Y. B.Tech (Civil Engineering), Part II, Sem-VI

Course Title	:	Lab-II Geotechnical Engineering –II	Course Code:	:	CEL 326
Pre-requisites		: Geotechnical Engineering -I			

The prerequisite for this course is to possess the fundamental knowledge of Soil engineering and Geotechnical engineering-I.

Type of Course	:	Practical
Course Domain	:	core
Skills Imbibed	:	Cognitive, Affective domain, Psychomotor

Course Assessment Methods:

Student is evaluated during External Practical Examination

Course Objectives:

- 5. To involve the application of scientific and technical principles of planning, analysis, design of foundation along with soil improvement techniques.
- 6. To provide a coherent development to the students for the courses in sector of Geotechnical Engineering & Soil Improvement Techniques etc.

Course Outcomes:

1. Students will be aware about the procedure adopted for conducting test on Soil material.

2. To study the bearing capacity of soil and settlement calculation in geotechnical engineering.

Practical covered	

The laboratory work should include the following:

Term work:

I) List of experiments:

- 1. Determine the bearing capacity of soil by using plate load test.
- 2. Determination of standard penetration Test.
- 3. Determination of consolidation Settlement of soil.
- 4. Demonstration on soil sampling.

II) A) Design Problem-

- 1. Bearing capacity calculation by various method and settlement calculations
- 2. Design of shallow foundation
- 3. Pile and Pile group
- 4. Cantilever sheet pile
- 5. Stability analysis

III) Industrial visit with report (Any One)

1. Visit to Earthwork site.

2. Visit to Foundation construction Site and preparation of report.

Class & Semester	:	: T. Y. B.Tech (Civil Engineering), Part II, Sem VI									
Course Title	:	Lab-I	II S	tructura	l Design	and	Drawing - I	Course Code:	:	CEL 328	
Teaching Scheme (Hours)	:	2 hr /v	veek	=2x13=2	26 hrs			Credits	:	1	
Evaluation Scheme (Marks)	:	IPE IOE	:	+	EPE EOE	:	50 = 50	Duration of Exam (in case of External Evaluation)	:		
Revision:	:	Secon	d			I		Month	:	December 2017	
		· 						•	•		
Pre-requisites		:									
The prerequisite for by Limit State Metho	this od o	course of Desig	is to n.	possess t	he know	ledg	e of design of	various components	sofs	steel structure	
Type of Course		:		Practical							
Course Domain		:	; (core							
Skills Imbibed	<i>d</i> : Cognitive, Affective domain , Psychomotor										
<i>Course Assessme</i> Student is evaluated	nt l dur!	Metho ing Exte	ds: ernal	Practical	l Examin	atio	n				
 Course Objectives: 1. To understand the use of IS Codes related to structural design of steel structures 2. To calculate loads on steel structure 3. To analyze the steel structure 4. To design steel structure 5. To another the structure of the structure of the structure of the structure 											
 Course Outcomes: Understand the use of IS Codes related to structural design of steel structures Calculate loads on steel structure Analyze the steel structure Design steel structure Prepare detailed structural drawings of a steel structure 											
Practical covered	Practical covered :										
The laboratory v	vorl	k should	l inc	lude the f	following	;:					
1. Design of	1. Design of any ONE structure as per IS 800- 2007										
a) Industrial building with roof supported by steel trusses.											

- b) Pedestrian bridge
- c) Design of Pre Engineered Building
- 2. Design of any **ONE** structure
 - a) Design of continuous beams using plastic analysis as per SP:6
 - b) Design of plate girder (welded)
- The Report should include :Brief Technical design project report involving Introduction, assumptions, load calculations, analysis, preferably using suitable software (such as STADD.PRO, STRUD, ETABS, SAP, etc.) and detailed design.
- 4. Drawings

Structural plan and detailed structural drawings (AUTOCAD may be used)

5. Report of a site visit mentioning structural details with relevant sketches of structural connections.

Class & Semester	:	Т	T. Y. B.Tech (Civil Engineering), Part III, Semester VI											
Course Title	:	Research Met	esearch Methodology Course Code: : RM 331											
Teaching Scheme (Hours)	:	2 hr /week= 2	2 hr /week= 2 x13= 26 hours Credits : Nil											
Evaluation Scheme (Marks)	:	Assignments Viva voce	Assignments:50Written Test:25DurationojViva voce:25Grand Total:100Exam											
Revision	:	Third	'hird Month I June 2018											

Pre-requisites	:	H.S.C level English Language Competency	
Type of Course	••	Audit Course at institute level	
Course Domain	: Research Skills		
Skills Imbibed	:	Cognitive: Understand, Predicting Situation, Comprehend, Affective : Receive, Listen, Respond, Showing self-reliance, Organize Psychomotor: Imitation, adaptation, articulation, origination	

Course Assessment Methods:

The students will be given five assignments each for 10 marks. At the end of the course, there will be a written test of 25 marks and a viva voce of 25 marks. There will be assessment for a total of 100 marks. Based on the marks obtained, they will be awarded with a grade similar to other credit courses. Though it is an audit course, obtaining passing grade is essential.

Course Objectives:

- 1. To gain familiarity with research phenomenon or to achieve new insights into it (known as exploratory or formulative research studies);
- 2. To develop an understanding of various research designs and techniques;
- 3. To identify various sources of information for literature review and data collection;
- 4. To judge the frequency with which something occurs or with which it is associated with something else (known as diagnostic research studies);
- 5. To know about testing a hypothesis of a causal relationship between variables (known as hypothesistesting research studies) ;

Course Outcomes: At the end of the course, the students

- 1. Will be able to understand some basic concepts of research and its methodologies;
- 2. Will be able to identify appropriate research topics ;
- 3. Will be able to select and define appropriate research problem and parameters;
- 4. Will be able to prepare a project proposal (to undertake a project) ;
- 5. Will be able to organize and conduct research (advanced project) in a more appropriate manner

write a research report;

Curriculum Content	Hours	
Unit I: Introduction to Research: Definition and basic Types of research, Research process	03	
and steps in it, Concept of Hypothesis, Research proposals and aspects.		
Unit II: Basic Statistics required for any research		
Introduction to Descriptive Statistics, Statistical data, Variable, Classification of data,	UU	
exploratory data analysis, Measures of central tendency, Dispersion-Standard deviation,		

Correlation and regression analysis.		
Unit III: Introduction to Design of Experiment: Concept of design of experiment, its		
objectives, strategies, Factorial experimental design, designing engineering experiments,		
basic principles, of replication. Guidelines of experiments.		
Unit IV : Single Factor Experiment: Hypothesis testing, Analysis of Variance		
components (ANOVA) for fixed effect model; Total, treatment and error of squares,	07	
Degrees of freedom, Confidence interval; ANOVA for random effects model, Estimation of	07	
variance components, goodness of fit tests, Chi-Square test, Kolmogorov-Smirnov(K-S)		
test.		
Unit V: Two factor Factorial Design: Basic definitions and principles, main effect and		
interaction, response surface and contour plots, General arrangement for a two-factor	07	
factorial design; Models Effects, means and regression, Hypothesis testing.		
Reference Books :		
1. Kothari, C.R., Research Methodology –Methods and techniques, New Age		
Publications, New Delhi, 2009. 2. Montagenery, Douglas C. (2007), 5/o. Design and Analysis of Experiments, Wiley.		
India.		
3. Montgomery, Douglas C. &Runger, George C. (2007), 3/e, Applied Statistics &		
Probability for Engineers, Wiley India.		
4. J.Medhi, Statistics Methods, New Age Publications, New Delhi 2009.		
5. Nabendu Pal and Saheb Sarkar, Statistics: Concepts and Applications, Prentice Hall of India Put Ltd, New Dolbi, 2004		
6. Panneerselvam, R., Research Methodology, Prentice-Hall of India, New Delhi, 2004.		

Equivalence of Third Year B.Tech (Civil Engineering)

Semester V and VI

The above detailed syllabus is a revised version of the Third Year. B.Tech (Civil Engineering) course being conducted by the Shivaji University at the Technology Department of the University. This syllabus is to be implemented from Academic year 2018-2019). The prime feature of this revision is the transformation of the existing curriculum into the Outcome based curriculum as specified in NBA rules and regulations.

The Equivalence for the subjects of Civil Engineering at Third Year B Tech Semester V and VI prerevised course under the faculty of Engineering and Technology is as follows.

Sr.No	Third Year B.Tech Semester V (Civil Engineering) Procrewised syllabus	Third Year B.Tech Semester V (Civil Engineering) Revised syllabus	Remark
	Tre-revised synabus	Keviseu synabus	
1.	Design of steel Structures	Design of steel Structures	No change
2.	Transportation Engineering –I	Transportation Engineering –I	No change
3.	Geotechnical Engineering- I	Geotechnical Engineering- I	No change
4.	Environmental Engineering-I	Environmental Engineering-I	No change
5.	Construction Management	Construction Management	No change
6.	Lab-I Transportation Engineering –I	Lab-I Transportation Engineering –I	No change
7.	Lab-II Geotechnical Engineering- I	Lab-II Geotechnical Engineering- I	No change
8.	Lab-III Environmental Engineering-I	Lab-III Environmental Engineering-I	No change
9.	Seminar	Seminar	No change
10.	Internship-I	Internship-I	No change
11.	Presentation and Communication Techniques	Presentation and Communication Techniques	No change

Third Year B.Tech Semester V (Civil Engineering)

Third Year B.Tech Semester VI (Civil Engineering)

Sr.No	Third Year B.Tech Semester VI (Civil Engineering) Pre-revised syllabus	Third Year B.Tech Semester VI (Civil Engineering) Revised syllabus	Remark
1.	Theory of structures -II	Theory of structures -II	Change in Number of Lecture
2.	Water Resource Engineering -I	Water Resource Engineering -I	No change

3.	Transportation Engineering –II	Transportation Engineering –II	No change
4.	Environmental Engineering-II	Environmental Engineering-II	No change
5.	Geotechnical Engineering- II	Geotechnical Engineering- II	No change
6.	Lab-I Geotechnical Engineering- II	Lab-I Geotechnical Engineering- II	No change
7.	Lab-II Environmental Engineering-II	Lab-II Environmental Engineering-II	No change
8.	Lab-III Structural Design Drawing-I	Lab-III Structural Design Drawing-I	IOE for 50 Marks added
9.	Mini Project	Mini Project	No change
10.	Internship- II		Shifted to Semester VII
11.	Research Methodology		No change